海洋环境下纤维增强树脂基复合材料腐蚀与防护研究进展

周少兰, 赵新, 蒋宇帆, 周富, 蒋龙, 张鑫, 孙道岑, 吴道勋

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 82-96.

PDF(5649 KB)
PDF(5649 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 82-96. DOI: 10.7643/ issn.1672-9242.2026.01.010
船舶及海洋工程装备

海洋环境下纤维增强树脂基复合材料腐蚀与防护研究进展

  • 周少兰1, 赵新1, 蒋宇帆2, 周富1, 蒋龙1*, 张鑫1, 孙道岑1, 吴道勋1
作者信息 +

Research Progress on Corrosion and Protection of Fiber Reinforced Resin Based Composites in Marine Environments

  • ZHOU Shaolan1, ZHAO Xin1, JIANG Yufan2, ZHOU Fu1, JIANG Long1*, ZHANG Xin1, SUN Daocen1, WU Daoxun1
Author information +
文章历史 +

摘要

系统综述了海洋环境下纤维增强树脂基复合材料的腐蚀行为与防护技术研究进展。首先分析了海水盐度、溶解氧、温度、pH、潮汐与潮流、太阳辐照及海洋生物等关键环境因素对纤维复合材料腐蚀的影响机制。随后从树脂基体、增强纤维及树脂/纤维界面失效3个方面阐述了复合材料在海洋环境中的多层级腐蚀机理。最后概述了当前防护技术的最新进展,包括材料本征改性、纤维与界面增强技术、多功能表面涂层、结构健康监测与主动防护等策略,为提升纤维增强树脂基复合材料在严苛海洋环境中的耐久性提供了理论依据和技术路径。

Abstract

The high salt, high humidity and strong irradiance characteristics of the marine environment pose a severe challenge to equipment materials. The work aims to systematically review the research progress on the corrosion behavior and protection technology of fiberreinforced resinbased composites in marine environments. Firstly, the effect mechanisms of key environmental factors such as seawater salinity, dissolved oxygen, temperature, pH, tides and tidal currents, solar irradiation and marine biological attachment on the corrosion of fiber composites were analyzed. Subsequently, the multi-level corrosion mechanism of composites in marine environments was expounded from three aspects: resin matrix, reinforced fibers, and failure at the resin/fiber interface. Finally, the latest progress of current protection technologies was summarized, including strategies such as intrinsic modification of materials, fiber and interface reinforcement technology, multifunctional surface coatings, structural health monitoring and active protection, providing theoretical basis and technical paths for improving the durability of fiberreinforced resinbased composites in harsh marine environments.

关键词

海洋环境 / 纤维增强复合材料 / 腐蚀机理 / 防护技术 / 界面失效 / 材料改性

Key words

marine environment / fiberreinforced composites / corrosion mechanism / protection technology / interface failure / material modification

引用本文

导出引用
周少兰, 赵新, 蒋宇帆, 周富, 蒋龙, 张鑫, 孙道岑, 吴道勋. 海洋环境下纤维增强树脂基复合材料腐蚀与防护研究进展[J]. 装备环境工程. 2026, 23(1): 82-96 https://doi.org/10.7643/ issn.1672-9242.2026.01.010
ZHOU Shaolan, ZHAO Xin, JIANG Yufan, ZHOU Fu, JIANG Long, ZHANG Xin, SUN Daocen, WU Daoxun. Research Progress on Corrosion and Protection of Fiber Reinforced Resin Based Composites in Marine Environments[J]. Equipment Environmental Engineering. 2026, 23(1): 82-96 https://doi.org/10.7643/ issn.1672-9242.2026.01.010
中图分类号: TJ04   

参考文献

[1] 蔡鹏, 柳存根, 林忠钦, 等.海洋强国目标下我国海洋装备关键基础性技术发展战略研究[J].中国工程科学, 2024, 26(5): 91-103.
CAI P, LIU C G, LIN Z Q, et al.Development Strategy of Key Basic Technologies for Marine Equipment to Enhance the Marine Strength of China[J].Strategic Study of Chinese Academy of Engineerng, 2024, 26(5): 91-103.
[2] 骆晨, 孙志华, 杨丽媛, 等.海洋环境服役发动机腐蚀损伤分析及防护能力提升建议[J].装备环境工程, 2024, 21(5): 50-56.
LUO C, SUN Z H, YANG L Y, et al.Analysis on Corrosion Damage of Aero Engine Servicing in Marine Environment and Suggestions for Protection Improvement[J].Equipment Environmental Engineering, 2024, 21(5): 50-56.
[3] 马文彬, 陈秀玉, 蒋文君, 等.表面改性技术对海洋环境中金属构件腐蚀损伤与腐蚀疲劳性能影响的研究进展[J].表面技术, 2025, 54(2): 17-37.
MA W B, CHEN X Y, JIANG W J, et al.Effect of Surface Modification Technique on Corrosion Damage and Corrosion Fatigue Performance Improvement of Marine Metal Components[J].Surface Technology, 2025, 54(2): 17-37.
[4] 赖思颖, 高丽, 李金龙.热带海洋环境不锈钢的腐蚀行为及其机理[J].中国表面工程, 2024, 37(6): 216-225.
LAI S Y, GAO L, LI J L.Corrosion Behavior and Mechanism of 304 and 316 Stainless Steel in Tropical Marine Environment[J].China Surface Engineering, 2024, 37(6): 216-225.
[5] KUMAR S, BAIRAGI D, ADHIKARY T, et al.Insights into the Corrosion Mechanisms in a Multiphase Medium-Manganese Steel in Marine Environment: Experimental Study and Density Functional Theory Simulations[J].Materials Today Communications, 2025, 46: 112640.
[6] WANG J P, ZHANG Y, LIU H W, et al.Fungal Corrosion Behavior and Mechanism of Deposit-Covered Aluminum Alloy 7075 in Marine Environment[J].Transactions of Nonferrous Metals Society of China, 2025, 35(5): 1406-1423.
[7] ZHENG Y F, WANG Z H, ZHANG X, et al.Mechanistic Insight into Pre-Strain Influenced Stress Corrosion Cracking of Advanced High-Strength Steels in Marine Environment[J].Corrosion Science, 2025, 255: 113057.
[8] 展旭和, 王海龙, 丁小明, 等.铝合金在海洋环境中的应力腐蚀机理研究进展[J].中国材料进展, 2023, 42(8): 662-668.
ZHAN X H, WANG H L, DING X M, et al.Research Progress on Stress Corrosion Mechanism of Aluminum Alloy in Marine Environment[J].Materials China, 2023, 42(8): 662-668.
[9] 杨宏茹, 高洞庭, 李想, 等.高性能热塑性复合材料在海洋环境水下结构中的应用研究进展[J].复合材料学报, 2025, 44(0): 1-15.
YANG H R, GAO D T, LI X, et al.Research Progress on the Application of High-Performance Thermoplastic Composites in Underwater Structures in Marine Environments[J] Journal of Composite Materials, 2025, 44(0): 1-15.
[10] ZHU L M, PAN B L, YANG Y L, et al.Effects of Marine Environment on Frictional Properties of Porous Oil-Impregnated D-Al2O3/UHMWPE Composites and Molecular Dynamics Simulation[J].Iranian Polymer Journal, 2025, 34(7): 963-975.
[11] LI K X, ZHOU A, LIU T J, et al.Long-Term Performance and Deterioration Mechanism of Novel Hydrophobic Coated Fiber Reinforced Composite in Marine Environment[J].Composites Part A: Applied Science and Manufacturing, 2025, 190: 108716.
[12] ZHU L Y, BI R, LI W D, et al.Aging Performance and Mechanism of Carbon Fiber-Reinforced Bismaleamide Composites under Natural Aging in Marine Environments[J].Materials Today Communications, 2024, 41: 110796.
[13] QI X, TIAN J W, GUO R, et al.Hydrothermal Aging of Carbon Fiber Reinforced Polymer Rods Intended for Cable Applications in Civil Engineering[J].Journal of Materials Research and Technology, 2023, 26: 5151-5166.
[14] YANG Y M, ZHAO J, ZHANG S S, et al.Influence of Salt Fog and Ambient Condition Exposure on CFRP-to-Steel Bonded Joints[J].Composite Structures, 2022, 280: 114874.
[15] KANG D H, LEE H W.Study of the Correlation between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds[J].Corrosion Science, 2013, 74: 396-407.
[16] ZHANG X W, WU W J, LI Y, et al.Corrosion Form Transition of Mooring Chain in Simulated Deep-Sea Environments: Remarkable Roles of Dissolved Oxygen and Hydrostatic Pressure[J].Journal of Materials Science & Technology, 2023, 162: 118-130.
[17] LI X L, ZHANG X Y, CHEN J Z, et al.Effect of Marine Environment on the Mechanical Properties Degradation and Long-Term Creep Failure of CFRP[J].Materials Today Communications, 2022, 31: 103834.
[18] LI H L, CHEN H J, ZHANG W, et al.Effects of Seawater Temperature and NaCl Concentration on Interlaminar Shear Behavior of CFRP Laminates[J].Materials Research Express, 2022, 9(2): 020009.
[19] MALIK A U, MAYAN KUTTY P C, SIDDIQI N A, et al.The Influence of pH and Chloride Concentration on the Corrosion Behaviour of AISI 316L Steel in Aqueous Solutions[J].Corrosion Science, 1992, 33(11): 1809-1827.
[20] 孔令森, 吴明, 王旭, 等.pH值对5A06铝合金应力腐蚀行为的影响[J].有色金属工程, 2019, 9(3): 7-12.
KONG L S, WU M, WANG X, et al.Effect of pH Values on Stress Corrosion Behavior of 5A06 Aluminum Alloy[J].Nonferrous Metals Engineering, 2019, 9(3): 7-12.
[21] SMOLEŃ J, OLESIK P, NOWACKI B, et al.The Influence of UV Radiation on the Properties of GFRP Laminates in Underwater Conditions[J].Scientific Reports, 2024, 14: 7446.
[22] SHI Z M, ZOU C, ZHOU F Y, et al.Analysis of the Mechanical Properties and Damage Mechanism of Carbon Fiber/Epoxy Composites under UV Aging[J].Materials, 2022, 15(8): 2919.
[23] 孙青平, 吴俊帅, 王孟佳, 等.从被动增强到主动修复: 面向环境老化的CFRP界面工程协同策略研究进展[J].复合材料学报, 2025, 44(0): 1-41.
SUN Q P, WUJ S, WANG M J, et al.From Passive Enhancement to Active Repair: Progress in the Study of Synergistic Strategies for CFRP Interface Engineering Facing Environmental Aging[J].Acta Materiae Compositae Sinica, 2025, 44(0): 1-41.
[24] DENG K L, LUO B, SUO H Y, et al.Characterization of Material Degradation Mechanism of Carbon Fiber Reinforced Epoxy Resin Composites under Ultraviolet Radiation and Salt-Fog Synergistic Environment[J].Polymer Composites, 2024, 45(1): 805-824.
[25] YIN Y, LIU S K, WU X Y, et al.MOF-Based Interfacial Phase Inhibiting Structural Damage of Carbon Fiber Reinforced Polymer Composites Derived from High-Energy Irradiation[J].Composites Part B: Engineering, 2025, 306: 112817.
[26] LAWAL S L, AFOLALU S A, JEN T C, et al.Corrosion Control and Its Application in Marine Environment—A Review[J].Solid State Phenomena, 2024, 355: 61-73.
[27] 杨景智, 金宇婷, 娄云天, 等.海洋环境中金属材料的微生物腐蚀研究进展: 从机制到防治[J].表面技术, 2025, 54(21): 143-158.
YANG J Z, JIN Y T, LOU Y T, et al.Microbiologically Influenced Corrosion of Metallic Materials in Marine Environments: From Mechanisms to Mitigation[J].Surface Technology, 2025, 54(21): 143-158.
[28] 邱丽娜, 张玮玮, 弓爱君, 等.腐蚀微生物种类及腐蚀机理研究进展[J].工程科学学报, 2023, 45(6): 927-940.
QIU L N, ZHANG W W, GONG A J, et al.Species of Corrosive Microbes and Corrosion Mechanisms[J].Chinese Journal of Engineering, 2023, 45(6): 927-940.
[29] GERALD O J, LI W G, LI Z, et al.Corrosion Behaviour of 2205 Duplex Stainless Steel in Marine Conditions Containing Erythrobacter Pelagi Bacteria[J].Materials Chemistry and Physics, 2020, 239: 122010.
[30] QIU L N, ZHAO D D, ZHENG S J, et al.Inhibition Effect of Pseudomonas Stutzeri on the Corrosion of X70 Pipeline Steel Caused by Sulfate-Reducing Bacteria[J].Materials, 2023, 16(7): 1-12.
[31] BATMANGHELICH F, LI L, SEO Y.Influence of Multispecies Biofilms of Pseudomonas Aeruginosa and Desulfovibrio Vulgaris on the Corrosion of Cast Iron[J].Corrosion Science, 2017, 121: 94-104.
[32] 杨金峰, 王亚楠, 张一梦, 等.生物膜中典型腐蚀微生物种间相互作用及其影响下的腐蚀机制研究进展[J].表面技术, 2025, 54(2): 1-16.
YANG J F, WANG Y N, ZHANG Y M, et al.Research Progress on the Interspecies Interactions and Corrosion Mechanisms of Typical Corrosion Microorganisms in Biological Membranes[J].Surface Technology, 2025, 54(2): 1-16.
[33] SUN J W, DUAN J Z, ZHANG Y M, et al.Transparent Hybrid Coatings for Marine Antifouling: Synergizing Amphiphilicity, Nanocellulose Lubrication, and Electrostatic Repulsion[J].Chemical Engineering Journal, 2025, 521: 166869.
[34] TIAN S, ZHANG J L, LIU S, et al.An Integrated Anti-Fouling and Anti-Corrosion Coating Enabled by rGO/AgNPs and Amphiphilic Networks[J].Engineering, 2024, 42(11): 223-234.
[35] WU Y M, ZHAO W J, WANG L P.State of the Art and Current Trends on the Metal Corrosion and Protection Strategies in Deep Sea[J].Journal of Materials Science & Technology, 2025, 215: 192-213.
[36] GELLERT E P, TURLEY D M.Seawater Immersion Ageing of Glass-Fibre Reinforced Polymer Laminates for Marine Applications[J].Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1259-1265.
[37] GARG M, SHARMA S, MEHTA R.Carbon Nanotube-Reinforced Glass Fiber Epoxy Composite Laminates Exposed to Hygrothermal Conditioning[J].Journal of Materials Science, 2016, 51(18): 8562-8578.
[38] PARK S Y, CHOI W J, CHOI C H, et al.An Experimental Study into Aging Unidirectional Carbon Fiber Epoxy Composite under Thermal Cycling and Moisture Absorption[J].Composite Structures, 2019, 207: 81-92.
[39] SHAO Y Z, OKUBO K, FUJII T, et al.Effect of Physical Modification of Matrix by Nano(Polyvinyl Alcohol) Fibers on Fatigue Performance of Carbon Fiber Fabric-Reinforced Vinylester Composites[J].Journal of Composite Materials, 2016, 50(29): 4065-4075.
[40] OGBONNA V E, POPOOLA A P I, POPOOLA O M, et al.A Review on Corrosion, Mechanical, and Electrical Properties of Glass Fiber-Reinforced Epoxy Composites for High-Voltage Insulator Core Rod Applications: Challenges and Recommendations[J].Polymer Bulletin, 2022, 79(9): 6857-6884.
[41] ZENG C Q.Enhancement of the Corrosion Inhibition of Carbon Fibre via the Effect of the Chloride Ions on Its Anodic Corrosion[J].Construction and Building Materials, 2020, 264: 1-12.
[42] WU X Y, SUN J K, WANG J M, et al.Investigation on Galvanic Corrosion Behaviors of CFRPS and Aluminum Alloys Systems for Automotive Applications[J].Materials and Corrosion, 2019, 70(6): 1036-1043.
[43] TAM L H, HE L, WU C.Molecular Dynamics Study on the Effect of Salt Environment on Interfacial Structure, Stress, and Adhesion of Carbon Fiber/Epoxy Interface[J].Composite Interfaces, 2019, 26(5): 431-447.
[44] SHIN P S, KIM J H, PARK H S, et al.A Review: Mechanical and Interfacial Properties of Composites after Diverse Types of Aging Using Micromechanical Evaluation[J].Fibers and Polymers, 2020, 21(2): 225-237.
[45] ZHANG X L, DENG Z C, ZHANG X L, et al.Effects of Seawater Environment on the Degradation of GFRP Composites by Molecular Dynamics Method[J].Polymers, 2022, 14(14): 28-36.
[46] 张月义, 唐小惠, 高尚兵, 等.氰酸酯树脂与高强高模型碳纤维的界面相容和性能匹配研究[J].复合材料科学与工程, 2025(2): 91-98.
ZHANG Y Y, TANG X H, GAO S B, et al.Research on Interfacial Compatibility and Performance Matching between Cyanate Ester Resin and High-Strength/High-Modulus Carbon Fiber[J].Composites Science and Engineering, 2025(2): 91-98.
[47] 王涵, 梁金华, 高振国, 等.微胶囊型自修复环氧树脂材料的力学性能及修复效率[J].中国塑料, 2024, 38(5): 40-46.
ANG H, LIANG J H, GAO Z G, et al.Mechanical Properties and Repair Efficiency of Self-Repairing Microencapsulated Epoxy Resin[J].China Plastics, 2024, 38(5): 40-46.
[48] HAN W, ZHANG H P, XU X, et al.Hybrid Enhancements by Polydopamine and Nanosilica on Carbon Fibre Reinforced Polymer Laminates under Marine Environment[J].Composites Part A: Applied Science and Manufacturing, 2018, 112: 283-289.
[49] HUANG Y D, ZHANG Y P, LIU S, et al.A Bioinspired Carbon Nanotube/Graphite Oxide/Epoxy Interlaminar Region for Simultaneously Strengthening and Toughening Glass Fiber Fabric/Epoxy Laminated Composites[J].Composites Part B: Engineering, 2025, 307: 112867.
[50] 吴苗苗, 欧云福, 张耘箫, 等.纤维增强聚合物的纳米改性工艺及其电磁屏蔽效应与力学性能的研究进展[J].材料研究与应用, 2025, 19(1): 1-14.
WU M M, OU Y F, ZHANG Y X, et al.Research Progress on Nano Modification Process of Fiber-Reinforced Polymers in Electromagnetic Shielding Effect and Mechanical Properties[J].Materials Research and Application, 2025, 19(1): 1-14.
[51] STANKOVIC D, OBANDE W, DEVINE M, et al.Accelerated Seawater Ageing and Fatigue Performance of Glass Fibre Reinforced Thermoplastic Composites for Marine and Tidal Energy Applications[J].Composites Part C: Open Access, 2024, 14: 100470.
[52] SAIKIA A, DAS S, BORAH L N, et al.Development of Self-Healed, Thermoformable, and Fracture Resistance Epoxy Nanocomposites Added with Disulfide Bond Grafted TiO2 Nanoparticles[J].Composites Part B: Engineering, 2025, 306: 112771.
[53] LI Y, ZHAO X W, YE L.Reinforcing CFRP Composites by Formation of Tailored Interfacial Mechanical Interlocking Structure on Carbon Fiber Surface[J].Journal of Polymer Research, 2023, 30(4): 150.
[54] YU X K, ZHANG S Q, FU S K, et al.An Adaptable Charge Source Enabled by Mode-Switchable TENG for Efficient Self-Repairing Coating[J].Advanced Functional Materials, 2024, 34(30): 2316140.
[55] GUO Y, ZHANG L L, SONG Q, et al.Simultaneously Enhancing Mechanical and Tribological Properties of Carbon Fiber Composites by Grafting SiC Hexagonal Nanopyramids for Brake Disk Application[J].Journal of Materials Science & Technology, 2022, 121: 1-8.
[56] BÜYÜKÖZTÜRK O, BUEHLER M J, LAU D, et al.Structural Solution Using Molecular Dynamics: Fundamentals and a Case Study of Epoxy-Silica Interface[J].International Journal of Solids and Structures, 2011, 48(14/15): 2131-2140.
[57] WANG X Q, AWAN I S, CHEN G Y, et al.Molecular Dynamics Simulations of Interfacial Adhesion between Carbon Fibers and Various Epoxies/Hardeners and Its Calorimetric Validation[J].Journal of Composite Materials, 2013, 47(8): 1011-1017.
[58] 王博, 魏世丞, 黄威, 等.海洋防腐蚀涂料的发展现状及进展简述[J].材料保护, 2019, 52(11): 132-138.
WANG B, WEI S C, HUANG W, et al.Status and Progress on Anticorrosive Coatings for Marine Application[J].Materials Protection, 2019, 52(11): 132-138.
[59] 田经纬.耐磨损抗腐蚀环氧树脂基复合材料的制备与性能研究[D].哈尔滨: 哈尔滨工业大学, 2023.
TIAN J W.Preparation and Performance Study of Aiti-Wear and Corrosion-Resistant Epoxy Resin Matrix Composites[D].Harbin: Harbin Institute of Technology, 2023.
[60] TIAN H L, ZHAN Y C, TIAN L M, et al.Corrosion Resistance Self-Healing Coating with Bioinspired Interfacial Structure[J].Progress in Organic Coatings, 2023, 174: 107303.
[61] 蔡昊原.pH/硫离子响应型智能涂层及其微生物腐蚀防护性能研究[D].青岛: 中国科学院大学(中国科学院海洋研究所), 2021.
CAI H Y.Research of Performance on Microbiological Corrosion Protection of pH/Sulfide Ion Responsive Intelligent Coating[D].Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2021.
[62] CALABRESE L, FIORE V, SCALICI T, et al.Experimental Assessment of the Improved Properties during Aging of Flax/Glass Hybrid Composite Laminates for Marine Applications[J].Journal of Applied Polymer Science, 2019, 136(14): 47203.
[63] PREM ANANDH A, SIVABALAN P, MOHANAVEL V, et al.Investigation of Basalt/Kevlar Fiber-Reinforced Porcelain Filler Infused Epoxy Composite: A Viable Alternative for Marine Applications[J].Results in Engineering, 2025, 25: 103928.
[64] ZHANG M H, LI X, DU A L, et al.Quantitative Damage Characterization in CFRPS Using an Interpretable CNN: A CT-Based Deep Learning Approach[J].Composites Part A: Applied Science and Manufacturing, 2026, 201: 109400.
[65] ZHANG Y F, WU X J, GUO Q W, et al.Advances in Sensors Technologies for Composites Structural Health Monitoring[J].Composite Structures, 2025, 370: 119448.
[66] GARDINER G.Sensors: Providing the Data Needed for Next-Gen Composites Manufacturing[J].Composites World, 2022, 8(3): 28-34.
[67] NASSAR J M, KHAN S M, VELLING S J, et al.Compliant Lightweight Non-Invasive Standalone “Marine Skin” Tagging System[J].npj Flexible Electronics, 2018, 2: 13.
[68] MOVAHEDI-RAD A V, KELLER T.Load History Effects in Fiber-Polymer Composites: A CRNN-Based Hybrid Deep Learning Approach for Fatigue Life Prediction and Structural Health Monitoring via Infrared Thermography[J].Composites Part A: Applied Science and Manufacturing, 2026, 200: 109263.
[69] LI M, LI H, ACHAGRI G, et al.Mechanical and Morphological Variations of Basalt Fiber in Seawater and a Strategy to Improve Its Performance with Nanocomposite Sizing[J].Construction and Building Materials, 2024, 420: 135582.

PDF(5649 KB)

Accesses

Citation

Detail

段落导航
相关文章

/